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Lambda Calculus

Review: 9/26 - Lambda Calculus [https://docs.google.com/document/d/1VjnJagBNYv_BmEGZgROulERCcNDfIkiv20c7mZr_gns/edit#heading=h.m1n86y93ovps]

Slides [https://owenarden.github.io/cse116-fall19/slides/lambda.key.pdf]


	
occurrence

	an appearance of a variable in an expression (binding does not count)






Quizzes

tiny.cc/

cse116-lambda-ind -> A

cse116-scope-ind -> C

cse116-beta1-ind -> D

cse116-beta2-ind -> A

cse116-norm-ind -> C

cse116-church-ind -> A

cse116-add-ind -> A

cse116-mult-ind -> B

cse116-sum-ind -> NO




Reductions


	
alpha-reduction

	
	\x -> e =a> \y -> e[x := y]
	| where not (y in FV(e))










	
beta-reduction

	(\x -> e1) e2 =b> e1[x := e2]

“Replace all free occurrences of x in e1 with e2.”





x[x := e] = e
y[x := e] = y
(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])
(\x -> e1)[x := e] = \x -> e1                   -- since x in e1 is bound
(\y -> e1)[x := e]
  | not (y in FV(e)) = \y -> e1[x := e]
  | otherwise undefined








Normal Forms

A redex is a lambda-term of the form (\x -> e1) e2 (i.e. can be beta-reduced).

A lambda-term is in normal form if it contains no redexes (i.e. cannot be beta-reduced).




Semantics: Evaluation

A lambda-term e evaluates to e’ if:
1. There is a sequence of stops e =?> e_1 =?> ... =?> e'


Examples

(\x -> x) apple
    =b> apple

(\f -> f (\x -> x)) (\x -> x)
    =b> (\x -> x) (\x -> x)
    =b> \x -> x

(\x -> x x) (\x -> x)
    =b> (\x -> x) (\x -> x)
    =b> \x -> x








Elsa Shortcuts


Named lambda-terms

let ID = \x -> x

To substitute a name with its defn, use a =d> step

ID apple
    =d> \x -> x apple
    =b> apple








Evaluation

e1 =*> e2 - e1 reduces to e2 in 0 or more steps, where each step is in =a>, =b>, =d>

e1 =~> e2 - e1 evaluates to e2 (i.e. final output)






Non-Terminating Evaluation

(\x -> x x) (\x -> x x)
    =b> (\x -> x x) (\x -> x x)





Programs can loop and never reduce to normal form!

This is called the omega-term.

What if we pass omega to another function?

let OMEGA = (\x -> x x) (\x -> x x)
(\x -> \y -> y) OMEGA










Lambda Calculus: Booleans

How do we encode T/F as a func?

With booleans, we make a binary choice (e.g. if b then e1 else e2)

We need to define three functions:

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y





such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana





eval ite_true:
    ITE TRUE e1 e2
    =d> (\b x y -> b x y)     TRUE e1 e2
    =b>   (\x y -> TRUE x y)  e1 e2
    =b>     (\y -> TRUE e1 y) e2
    =b>            TRUE e1 e2
    =d> (\x y -> x) e1 e2
    =b>   (\y -> e1) e2
    =b> e1

eval ite_false:
    ITE FALSE e1 e2
    =d> (\b x y -> b x y)      FALSE e1 e2
    =b>   (\x y -> FALSE x y)  e1 e2
    =b>     (\y -> FALSE e1 y) e2
    =b>            FALSE e1 e2
    =d> (\x y -> y) e1 e2
    =b>   (\y -> y) e2
    =b> e2





Now we can define other boolean operators:

let NOT = \b     -> ITE b FALSE TRUE
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR  = \b1 b2 -> ITE b1 TRUE b2





(ITE is redundant, so it can be removed from these defns)




Lambda Calculus: Records


	Start with records w/ 2 fields (pairs)


	
	What do we want to do?
	
	Pack two items into a pair


	Get first


	Get second













API

let PAIR = \x y -> (\b -> ITE b x y)
    -- a function that returns a function
        -- that takes a boolean asking which item you want
let FST  = \p -> p TRUE
let SND  = \p -> p FALSE





such that

FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana








Triples

let TRIPLE = \x y z -> PAIR x (PAIR y z)
let FST3   = \t -> FST t
let SND3   = \t -> FST (SND t)
let TRD3   = \t -> SND (SND t)










Lambda Calculus: Numbers


	What about natural numbers [0..]?


	Counters, arithmetic, comparisons


	+, -, *, ==, <=, etc




We need to define:


	a family of numerals ZERO, ONE, TWO, etc


	arithmetic functions INC, DEC, ADD, SUB, MULT


	comparisons IS_ZERO, EQ





Implementation

Church numerals: A number N is encoded as a combinator that calls a function on an argument N times

let ZERO  = \f x -> x
let ONE   = \f x -> f x
let TWO   = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
...etc






Increment

-- call `f` on `x` one more time than `n` does
let INC = \n -> (\f x -> f (n f x))

-- ex
INC ZERO
    =d> (\n f x -> f (n f x)) ZERO
    =b> \f x -> f (ZERO f x)
    =*> \f x -> f x
    =d> ONE








Add

let ADD = \n m -> n INC m
-- n is a function that takes a function and number
-- i.e. apply INC n times to m

-- ex
eval add_one_zero:
    ADD ONE ZERO
        =d> (\n m -> n INC m) ONE ZERO
        =b> (\m -> ONE INC m) ZERO
        =b> ONE INC ZERO
        =d> (\f x -> f x) INC ZERO
        =b> INC ZERO
        =*> ONE

eval add_two_one:
    ADD TWO ONE
        =d> (\n m -> n INC m) TWO ONE
        =b> (\m -> TWO INC m) ONE
        =b> TWO INC ONE
        =d> (\f x -> f (f x)) INC ONE
        =b> INC (INC ONE)
        =*> THREE








Mult

let MULT = \n m -> n (ADD m) ZERO
-- ADD m returns a function
-- so we call ADD m on ZERO n times
-- similar to python partials

-- ex
eval two_times_one:
    MULT TWO ONE
        =d> (\n m -> n (ADD m) ZERO) TWO ONE
        =b> (\m -> TWO (ADD m) ZERO) ONE
        =b> TWO (ADD ONE) ZERO
        =~> ADD ONE (ADD ONE ZERO)
        =~> TWO












Lambda Calculus: Recursion

Ex. I want to write a number that sums up natural numbers to n.


	\n -> ... -- = 1 + 2 + ... + n




Step 1: Pass in the function to call recursively

let STEP =
    \rec ->
        \n -> ITE (ISZ n)
            ZERO
            (ADD n (rec (DEC n)))





Step 2: Do something to STEP so that the function passed as rec becomes:

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))


Note

Wanted: a combinator FIX s.t. FIX STEP calls STEP with itself as the first argument

FIX STEP
    =*> STEP (FIX STEP)






Note

It’s important that STEP has some base case in it, or else you end up with STEP (STEP (STEP (STEP...)))



then, let SUM = FIX STEP, so SUM =*> STEP SUM

eval sum_one:
    SUM ONE
        =*> STEP SUM ONE
        =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE
        =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE
        =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))
        =*> ITE FALSE ZERO (ADD ONE (STEP SUM ZERO))
        =*> ADD ONE (SUM ZERO)
        =*> ADD ONE (STEP SUM ZERO)
        =d> ADD ONE ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
        =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)
        =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))
        =*> ADD ONE (ITE TRUE ZERO (ADD ZERO (SUM (DEC ZERO))))
        =*> ADD ONE ZERO
        =~> ONE







So how do we define FIX?


	
	Let’s look back at omega:
	
	(\x -> x x) (\x -> x x) =b> (\x -> x x) (\x -> x x)










	We need something similar but with control


	Thus, the Y combinator (or fixpoint)




let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

eval fix_step:
    FIX STEP
    =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
    =b> (\x -> STEP (x x)) (\x -> STEP (x x))
    =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
    =d> STEP (FIX STEP)






Note

Example: MULT using recursion

-- if we can use recursion by name:
let MULT x y =
    ITE (ISZ y)
        ZERO
        ADD x (MULT x (DECR y))

-- replace the self ref with a passed func
let MULT1 f x y =
    ITE (ISZ y)
        ZERO
        ADD x (f x (DECR y))

-- and use fixpt
let MULT = FIX MULT1

-- therefore, generally
let FUNC0 = \f n -> ... f (DECR n)
let FUNC = FIX FUNC0













          

      

      

    

  

    
      
          
            
  
Haskell

Slides [https://owenarden.github.io/cse116-fall19/slides/haskell.key.pdf]


Quizzes

cse116-pair-ind -> D

cse116-tpair-ind -> D

cse116-pattern-ind -> D




What is Haskell?

Haskell is a typed, lazy, purely functional language, with:


	types


	builtins (bools, numbers, chars)


	tuples


	lists


	recursion




Haskell v. lambda-calc:


	A program is an expression, not a sequence of statements


	it evaluates to a value, does not perform actions


	
	functions are first-class values
	
	can be passed as args


	can be returned from a func


	can be partially applied










	
	but there are things that aren’t funcs
	
	variable assignments/literals


	top level bindings










	you can also define funcs using equations




pair x y b = if b then x else y -- \x y b -> ITE b x y






	and patterns:




pair x y True  = x
pair x y False = y






	a pattern is a variable (matches any value), or a value (matches that value)


	the above pattern is equivalent to:




pair x y True  = x
pair x y b     = y

pair x y True  = x
pair x y _     = y -- wildcard: don't create binding








Guards


	an expression can have multiple guards (bool exp)




cmpSquare x y | x > y*y  = "bigger"
              | x == y*y = "equal"
              | x < y*y  = "smaller"

-- equals to
cmpSquare x y | x > y*y   = "bigger"
              | x == y*y  = "equal"
              | otherwise = "smaller"








Recursion

Is built in!

sum n = if n == 0
            then 0
            else n + sum (n - 1)

-- or
sum 0 = 0
sum n = n + sum (n - 1)








Variable Scope


	Top level vars have global scope




-- vars defined out of order
message = if foo
            then "bar"
            else "baz"
foo = True

-- mutual recursion
f 0 = True
f n = g (n - 1)

g 0 = False
g n = f (n - 1)

-- this is not allowed: immutable vars, can only be defined once per scope
foo = True
foo = False






Local Variables

You can introduce a new local scope using a let-expression

sum 0 = 0
sum n = let n' = n - 1  -- n' is only in scope in the in block
        in n + sum n'

-- multiple lets
sum 0 = 0
sum n = let
            n' = n - 1
            sum' = sum n'
        in n + sum'





If you need a var whose scope is an eqn, use where

cmpSquare x y | x > z  = "bigger"
              | x == z = "equal"
              | x < z  = "smaller"
    where z = y*y










Types

Lambda-calculus is untyped: for example, let FNORD = ONE ZERO.

In Haskell, every expression either has a type or is ill-typed and rejected statically (at compile-time)


Type Annotations

You can annotate bindings with types using ::

foo :: Bool
foo = True

message :: String
message = if foo
            then "bar"
            else "baz"

-- word-sized integer
rating :: Int
rating = if foo then 10 else 0

-- arbitrary precision int
something :: Integer
something = factorial 100





Functions have arrow types

> :t (\x -> if x then 'a' else 'b')
(\x -> if x then 'a' else 'b') :: Bool -> Char

-- annotate function bindings!
sum :: Int -> Int
sum 0 = 0
sum n = n + sum (n - 1)

-- multiple args
pair :: String -> (String -> (Bool -> String))
pair x y b = if b then x else y

-- same as
pair :: String -> String -> Bool -> String
pair x y b = if b then x else y








Lists

A list is:

-- an empty list
[] -- "nil"

-- a head element attached to a tail list
x:xs -- "x cons xs"

-- examples
[] -- a list with 0 elements

1:[] -- [1]

(:) 1 [] -- for any infix op, (op) is a regular function

1:(2:(3:(4:[]))) -- [1, 2, 3, 4]

1:2:3:4:[] -- same as above

[1,2,3,4] -- guess what this does





[] and (:) are the list constructors


	True and False are Bool constructors


	0, 1, 2 are… complicated, but basically Int constructors


	they take 0 args, so we call them values




A list has type [A] when each of its elements has type A

foo :: [Int]
foo = [1,2,3]

bar :: [Char]                   -- = String
bar = ['h', 'e', 'l', 'l', 'o'] -- = "hello"

generic :: [t]
generic = []






Functions on List

-- range
upto :: Int -> Int -> [Int]
upto n m
    | n > m     = []
    | otherwise = n : (upto (n + 1) m)

-- syntactic sugar:
[1..7]   -- = [1,2,3,4,5,6,7]
[1,3..7] -- = [1,3,5,7]

-- length
length :: [Int] -> Int
length []     = 0
length (_:xs) = 1 + length xs  -- note: a pattern can be applied to other patterns





Pattern matching attempts to match values against patterns and, if desired, bind variables to successful values




List Comprehensions

[toUpper c | c <- s]
-- [toUpper(char) for c in s] in Python

[(i, j) | i <- [1..3],
          j <- [1..i]) -- multiple generators
-- [(i, j) for i in range(1, 4) for j in range(1, i+1)]

[(i, j) | i <- [1..3],
          j <- [1..i],
          i + j == 5) -- multiple generators with condition
-- [(i, j) for i in range(1, 4) for j in range(1, i+1) if i + j == 5]










Pairs

myPair :: (String, Int)
myPair = ("apple", 3)





(,) is the pair constructor

-- field access
fruit = fst myPair
num   = snd myPair

-- field access using patterns
isEmpty (x, y) = y == 0

-- same as
isEmpty        = \(x, y) -> y == 0
isEmpty p      = let (x, y) = p in y == 0





What about:

f :: String -> [(String, Int)] -> Int
f _ [] = 0
f x ((k,v) : ps)
    | x == k    = v
    | otherwise = f x ps

-- in Python: f = ((k,v) : ps).get(x, 0)
-- key-value pair lookups








Tuples

Go ahead and make n-tuples, they work pretty much as you expect

triple :: (Bool, Int, [Int])
triple = (True, 1, [1,2,3])

-- also
myUnit :: ()
myUnit = ()













          

      

      

    

  

    
      
          
            
  
Datatypes and Recursion

Slides [https://owenarden.github.io/cse116-fall19/slides/adt-rec.key.pdf]

Quizzes

cse116-para-ind -> C
cse116-adt-ind -> D
cse116-case-ind -> B
cse116-case2-ind -> D
cse116-rectype-ind -> E
cse116-tree-ind -> C
cse116-leaves-ind -> D
cse116-tail-ind -> NO


Representing complex data


	base/primitive types: int, float, bool, etc


	ways to build up types: functions, tuples, lists




Algebraic Data Types: a technique to build data types from these


Note

Tuples can do the job, but there are two problems:


	verbose and unreadable


	no type checking (unsafe)




type Date = (Int, Int, Int)
type Time = (Int, Int, Int)

deadDate :: Date
deadDate = (2, 4, 2019)

deadTime :: Time
deadTime = (11, 59, 59)

-- example: extend
extension :: Date -> Date
extension = ...

-- however, you can do
extension deadTime -- which should error!







Solution: construct datatypes

data Date = Date Int Int Int
data Time = Time Int Int Int
-- constructor ^  ^ param types

deadDate :: Date
deadDate = Date 2 4 2019

deadTime :: Time
deadTime = Time 11 59 59








Building Data Types


	Product types (each-of): a value of T contains a value of T1 and a value of T2


	Sum types (one-of): A value of T contains a value of T1 or a value of T2


	Recursive types: A value of T contains subvalues of type T





Product Types

You can name the constructor params:

data Date = Date {
    month :: Int,
    day :: Int,
    year :: Int
}

deadDate = Date 2 4 2019
deadMonth = month deadDate
-- field name is func that accesses date








Sum Types

e.g. a type for Paragraph that is one of the three options

data Paragraph =
      Text String
    | Heading Int String
    | List Bool [String]








Recursive Types

See recursive-types






Constructing Datatypes

data T =
      C1 T11 .. T1k






C2 T21 .. T2l

..

Cn Tn1 .. Tnm



T is the datatype

C1 .. Cn are the constructors

A value of type T is


	either C1 v1 .. vk with vi :: T1i


	or C2 v1 .. vl with vi :: T2i


	or …


	or Cn v1 .. vm with vi :: Tni







Writing Functions

e.g. how to write a function to convert nanoMD to HTML?


Pattern Matching

match on the constructor

html :: Paragraph -> String
html (Text str) = ...
html (Heading lvl str) = ...
html (List ord items) = ...





But, there are dangers:

-- example: missing a type
html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

html (Heading 1 "Introduction") -- runtime error!





You can also pattern match inside the program:

html :: Paragraph -> String
html p =
    case p of
        Text str -> ...
        Heading lvl str -> ...
        List ord items -> ...








Case

case e of
    pattern1 -> e1
    pattern2 -> e2
    ...
    patternN -> eN





has type T if:


	each e1..eN has type T


	e has some type D


	each pattern1..patternN is a valid pattern for D









Recursive Types

Let’s define natural numbers.

data Nat = Zero       -- base constructor
           | Succ Nat -- inductive constructor

Zero      -- 0
Succ Zero -- 1





A Nat value is a box named Zero or a box labeled Succ with another Nat in it


Using as Parameter

toInt :: Nat -> Int
toInt Zero     = 0           -- base case
toInt (Succ n) = 1 + toInt n -- inductive case








Using as Result

fromInt :: Int -> Nat
fromInt n
    | n <= 0    = Zero
    | otherwise = Succ (fromInt (n - 1))

-- and operations
add :: Nat -> Nat -> Nat
add Zero     m = m
add (Succ n) m = Succ (add n m)

sub :: Nat -> Nat -> Nat
sub n        Zero     = n
sub Zero     _        = Zero
sub (Succ n) (Succ m) = sub n m








Lists

Lists aren’t built in!

data List = Nil
    | Cons Int List

[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))





Ex. appending two lists

append :: List -> List -> List
append [] ys     = ys
append (x:xs) ys = x:(append xs ys)

append2 :: List -> List -> List
append2 xs []     = xs
append2 xs (y:ys) = append xs:y ys








Trees

Think of lists as unary trees with elements stored in the nodes.
What about binary trees?

data Tree = Leaf | Node Int Tree Tree  -- leaves don't store data!

t1234 = Node 1
            (Node 2 (Node 3 Leaf Leaf) Leaf)
            (Node 4 Leaf Leaf)

1 - 2 - 3 - ()
  |   |   \ ()
  |   \ ()
  \ 4 - ()
      \ ()






Functions on Trees

depth :: Tree -> Int
depth Leaf = 0
depth (Node _ l r) = 1 + max (depth l) (depth r)








Ex: Calculator

Let’s implement an arithmetic calculator to eval things like 4.0 + 2.0, 3 - 9, (4.0 + 2.9) * (1.0 + 2.2)

data Expr = Val Float
            | Add Expr Expr
            | Sub Expr Expr
            | Mul Expr Expr

-- evaluate!
eval :: Expr -> Float
eval (Num f)     = f
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2












Tail Recursion

Whatever the recursive call returns will be what the expression returns.
No computations are allowed on recursively returned values.

-- tail recursive factorial!
facTR :: Int -> Int
facTR n = loop 1 n
    where
        loop :: Int -> Int -> Int
        loop acc n
            | n <= 1    = acc
            | otherwise = loop (acc * n) (n - 1)

--      <facTR 4>
--     <<loop 1 4>>
--    <<<loop 4 3>>>
--   <<<<loop 12 2>>>>
--  <<<<<loop 24 1>>>>>
-- <<<<<<24>>>>>>











          

      

      

    

  

    
      
          
            
  
Higher-Order Functions


Intro

Slides [https://owenarden.github.io/cse116-fall19/slides/hof.key.pdf]

Quizzes

cse116-map-ind -> D

cse116-quiz-ind -> D

cse116-foldeval-ind -> B

cse116-foldtype-ind -> D

cse116-foldl2-ind ->

In this lecture: code reuse with higher-order functions (HOFs)

e.g.: map, filter, fold


Recursion

Gets pretty old pretty quickly!

Ex. a function that finds all even nums in a list

evens :: [Int] -> [Int]
evens []                      = []
evens (x:xs) | x `mod` 2 == 0 = x:(evens xs)
             | otherwise      = evens xs





or a function that filters 4 letter words

fourChars :: [Int] -> [Int]
fourChars []     = []
fourChars (x:xs) | (length x) == 4 = x:(fourChars xs)
                 | otherwise       = fourChars xs








HOFs

HOFs are a general pattern expressed as a HOF that takes customizable args, applied multiple times






Filter

filter :: (a -> Bool) -> [a] -> [a]  -- polymorphic type!
filter f [] = []
filter f (x:xs)
    | f x       = x:(filter f xs)
    | otherwise = filter f xs

-- now we can:
evens = filter isEven
    where isEven x = x `mod` 2 == 0

fourChars = filter isFour
    where isFour x = length x == 4








Map

Ex: we want to do some op on every elem

-- boring!
shout []     = []
shout (x:xs) = toUpper x : shout xs

square []     = []
square (x:xs) = x * x : square xs





Let’s do this!

map :: (a -> b) -> [a] -> [b]
map f []     = []
map f (x:xs) = f x : map f xs

-- so
shout = map (\x -> toUpper x)
square = map (\x -> x*x)








Fold

Ex: length/sum of a list

How about joining a list of strings?

cat :: [String] -> String
cat []     = ""
cat (x:xs) = x ++ cat xs






Fold-Right

This is fold-right!

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b []     = b
foldr f b (x:xs) = f x (foldr f b xs)

-- so:
sum = foldr (+) 0
cat = foldr (++) ""
len = foldr (\x n -> 1 + n) 0





It’s called this because it accumulates from the right (expansion is right associative)




Fold-Left

What about tail recursive versions?

-- tail recursive cat!
catTR :: [String] -> String
catTR xs = helper "" xs
    where
        helper acc []     = acc
        helper acc (x:xs) = helper (acc ++ x) xs





so:

foldl :: (a -> b -> b) -> b -> [a] -> b
foldl f b xs = helper b xs
    where
        helper acc []     = acc
        helper acc (x:xs) = helper (f acc x) xs

-- so, syntax is the same as foldr:
sumTR = foldl (+) 0
catTR = foldl (++) ""










Flip

Useful HOF:

-- instead of writing:
foldl (\xs x -> x : xs) [] [1, 2, 3]

-- write:
foldl (flip (:)) [] [1, 2, 3]

flip :: (a -> b -> c) -> (b -> a -> c)








Compose

map (\x -> f (g x)) ys
-- ==
map (f . g) ys

(.) :: (b -> c) -> (a -> b) -> a -> c
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The Nano Language

Features of Nano:


1. Arithmetic expressions


Evaluator 1

e ::= n
    | e1 + e2
    | e1 - e2
    | e1 * e2

-- haskell representation:
data Binop = Add | Sub | Mul
data Expr = Num Int
            | Bin Binop Expr Expr

-- evaluator:
eval :: Expr -> Int
eval (Num n)         = n
eval (Bin Add e1 e2) = eval e1 + eval e2
eval (Bin Sub e1 e2) = eval e1 - eval e2
eval (Bin Mul e1 e2) = eval e1 * eval e2










2. Variables and let-bindings

e ::= n | x
    | e1 + e2 | e1 - e2 | e1 * e2
    | let x = e1 in e2

-- haskell representation:
type Id = String

data Expr = Num Int                -- number
            | Var Id               -- variable
            | Bin Binop Expr Expr  -- binary op
            | Let Id Expr Expr     -- let expr





thus, expressions must be evaluated in Environments


Evaluator 2

Previous implementation: Evaluator 1

type Value = Int
data Env = ...

-- add new id/value to env
add :: Id -> Value -> Env -> Env

-- lookup id in env
lookup :: Id -> Env -> Value

-- evaluator:
eval :: Env -> Expr -> Value
eval env (Num n)           = n
eval env (Var x)           = lookup x env
eval env (Bin op e1 e2)    = f v1 v2
    where
        v1 = eval env e1
        v2 = eval env e2
        f  = case op of
            Add -> (+)
            Sub -> (-)
            Mul -> (*)
eval env (Let x e1 e2)     = eval env' e2
    where
        v    = eval env e1
        env' = add x v env








Runtime Errors

Lookups can fail when a var is not bound!

How do we ensure that it doesn’t raise a runtime error?

In eval env e, env must contain bindings for all free vars of e. Evaluation only succeeds when all expressions are closed.






3. Functions

Let’s add lambda abstractions and function application!

e ::= n | x
    | e1 + e2 | e1 - e2 | e1 * e2
    | let x = e1 in e2
    | \x -> e  -- abstraction
    | e1 e2    -- application

-- haskell representation:
data Expr = Num Int                -- number
            | Var Id               -- variable
            | Bin Binop Expr Expr  -- binary op
            | Let Id Expr Expr     -- let expr
            | Lam Id Expr          -- abstraction
            | App Expr Expr        -- application






Note

Now, let’s try to evaluate something…

eval [] {let c = 42 in let cTimes = \x -> c * x in cTimes 2}
=> eval [c:42] {let cTimes = \x -> c * x in cTimes 2}
=> eval [cTimes:???, c:42] {cTimes 2}





How do we represent lambdas as a value? Let’s try data Value = VNum Int | VLam Id Expr and evaluate…

eval [] {let c = 42 in let cTimes = \x -> c * x in cTimes 2}
=> eval [c:42] {let cTimes = \x -> c * x in cTimes 2}
=> eval [cTimes:(\x -> c * x), c:42] {cTimes 2}
=> eval [cTimes:(\x -> c * x), c:42] {(\x -> c * x) 2}
=> eval [x:2, cTimes:(\x -> c * x), c:42] {x * c}
=> 42 * 2
=> 84





But what if c is redefined before cTimes is used?

The problem that this brings up is static v. dynamic scoping; static scoping = most recent binding in text,
whereas dynamic = most recent binding in execution



How do we implement lexical scoping? See Closures

Now let’s update our evaluator! Previous implementation: Evaluator 2


Evaluator 3

data Value = VNum Int    -- new!
    | VClos Env Id Expr  -- env + formal + body

eval :: Env -> Expr -> Value
eval env (Num n)           = VNum n  -- we must wrap in VNum now!
eval env (Var x)           = lookup x env
eval env (Bin op e1 e2)    = VNum (f v1 v2)
    where
        (VNum v1) = eval env e1
        (VNum v2) = eval env e2
        f  = case op of
            Add -> (+)
            Sub -> (-)
            Mul -> (*)
eval env (Let x e1 e2)     = eval env' e2
    where
        v    = eval env e1
        env' = add x v env
-- new!
eval env (Lam x body)      = VClos env x body
eval env (App fun arg)     = eval bodyEnv body
    where
        (VClos closEnv x body) = eval env fun  -- eval function to closure
        vArg                   = eval env arg  -- eval argument
        bodyEnv                = add x vArg closEnv





But note: this evaluator doesn’t cover recursion!






4. Recursion

We have to do this in homework, yay! See hw4.






Environments

an environment maps all free vars to values

x * y
=[x:17, y:2]=> 34

x * y
=[x:17]=> Error: unbound var y

x * (let y = 2 in y)
=[x:17]=> 34





To evaluate let x = e1 in e2 in env:


	evaluate e2 in an extended env env + [x:v]


	where v = eval e1







Closures

Closure = lambda abstraction (formal + body) + environment at function definition

a closure environment must save all free variables of a function defn!

data Value = VNum Int
    | VClos Env Id Expr  -- env + formal + body

-- our syntax:
-- binding:<env, lambda>

-- now, eval:
eval [] {let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2}
    => eval [c:42] {let cTimes = \x -> c * x in let c = 5 in cTimes 2}
    => eval [cTimes:<[c:42], \x -> c * x>, c:42] {let c = 5 in cTimes 2}
    => eval [c:5, cTimes:<[c:42], \x -> c * x>, c:42] {cTimes 2}
    => eval [c:5, cTimes:<[c:42], \x -> c * x>, c:42] {<[c:42], \x -> c * x> 2}
    -- restore env to the one inside the closure, then bind 2 to x:
    => eval [x:2, c:42] {c * x}
    => 42 * 2
    => 84
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[Add]     --------------------------------------------------------
                                 1 + 2 => 3
[Let-Def] --------------------------------------------------------
          (let x = 1 + 2 in 4 + 5 + x) => (let x = 3 in 4 + 5 + x)








Formalizing Nano

We want to be able to guarantee properties about programs, such as:


	evaluation is deterministic


	all programs terminate


	certain programs never fail at runtime


	etc.




To prove theorems about programs we first need to define formally


	their syntax (what programs look like)


	their semantics (what it means to run a program)




Let’s start with Nano1 (Nano w/o functions) and prove some stuff!


Nano1: Syntax

e ::= n | x                          --  expressions
        | e1 + e2
        | let x = e1 in e2

v ::= n                                  --  values





where n ∈ ℕ, x ∈ Var




Nano1: Operational Semantics

Operational semantics defines how to execute a program step by step

Let’s define a step relation (reduction relation) e  =>  e’


	expression e makes a step (reduces in one step) to an expression e’




We define the step relation inductively through a set of rules:

               e1 => e1'           --  premise
[Add-L]   -------------------
          e1 + e2 => e1' + e2      --  conclusion

               e2 => e2'
[Add-R]   -------------------
          n1 + e2 => n1 + e2'

[Add]     n1 + n2 => n              where  n  ==  n1  +  n2

                        e1 => e1'
[Let-Def] -------------------------------------
          let x = e1 in e2 => let x = e1' in e2

[Let]     let x = v in e2 => e2[x := v]





and we can define e[x := v] as:

x[x := v]                  = v
y[x := v]                  = y
n[x := v]                  = n
(e1 + e2)[x := v]          = e1[x := v] + e2 [x := v]
(let x = e1 in e2)[x := v] = let x = e1[x := v] in e2
(let y = e1 in e2)[x := v] = let x = e1[x := v] in e2[x := v]





A reduction is valid if we can build its derivation by stacking the rules:

  [Add] --------------------
              1 + 2 => 3
[Add-L] --------------------
        (1 + 2) + 5 => 3 + 5





Note: we don’t have reduction rules for n or x, since both these expressions cannot be further reduced (normal).

However, x is not a value, and if the final result is that, it’s a runtime error (stuck)




Evaluation Order

Out of these expressions, only the first is valid:


	(1 + 2) + (3 + 4) => 3 + (3 + 4)


	(1 + 2) + (3 + 4) => (1 + 2) + 7




since expression 1 has a derivation, but expr 2 does not:

  [Add] --------------------------------
                    1 + 2 => 3
[Add-L] --------------------------------
        (1 + 2) + (3 + 4) => 3 + (3 + 4)

-- but:
  [???] --------------------------------
        (1 + 2) + (3 + 4) => (1 + 2) + 7








Evaluation Relation

Like in lambda calc, we define the multi-step reduction relation e =*> e':

e =*> e' iff there exists a sequence of expressions e1..en` s.t. ``e1 = e, en = e', ei => e(i+1)

Similarly, we can define evaluation relations e =~> e'.




Nano1 Thms

Let’s prove:


	every Nano1 program terminates


	Closed Nano1 programs don’t get stuck


	(corollary 1+2): closed nano programs evaluate to a value




using induction!


Induction on terms

e ::= n | x
        | e1 + e2
        | let x = e1 in e2





To prove \forall e.P(e), we need to prove:


	BS 1: P(n)


	BS 2: P(x)


	IS 1: P(e1 + e2) assuming P(e1) and P(e2)


	IS 2: P(let x = e1 in e2) assuming P(e1) and P(e2)







Induction on derivations

The relation => is also defined inductively:


	axioms are base cases ([Add], [Let])


	rules with premises are inductive cases ([Add-L], [Add-R], [Let-Def])









Thm: Termination

Thm 1: For any expression e, there exists e' s.t. e =~> e'.

Let’s define the size of an expression s.t.:


	size of each expression is positive


	each reduction step strictly decreases the size




size n                  = 1
size x                  = 1
size (e1 + e2)          = size e1 + size e2
size (let x = e1 in e2) = size e1 + size e2





Lemma 1: For all e, size e > 0.


	BS 1: size n = 1 > 0.


	BS 2: size x = 1 > 0.


	IS 1: size (e1 + e2) = size e1 + size e2 > 0 because size e1 > 0 and size e2 > 0 by IH.


	IS 2: similar.




Lemma 2: For any e, e' s.t. e => e', size e' < size e.

Proof: by induction on the derivation of e => e'.

Base case: [Add]


	Given: the root of the derivation is [Add]: n1 + n2 => n where n = n1 + n2.


	To prove: size n < size (n1 + n2)


	1 < 2.




Inductive case: [Add-L]


	Given: the root of the derivation is [Add-L]: (defn [Add-L].)


	To prove: size (e1' + e2) < size (e1 + e2)


	IH: size e1' < size e1


	size e1' + size e2 < size e1 + size e2 by addition


	size (e1' + e2) < size (e1 + e2) by defn of size. QED.




Base case: [Let]


	Given: root of the derivation is [Let]: let x = v in e2 => e2[x := v]


	Prove: size (e2[x := v]) < size (let x = v in e2)


	size (e2[x := v]) = size e2 by aux lemma


	size (let x = v in e2) = size v + size e2 by defn


	size e2 < size v + size e2 by lemma 1


	therefore, size (e2[x := v]) < size (let x = v in e2)









Nano2: Adding functions

Let’s extend the syntax:

e ::= n | x                          --  expressions
        | e1 + e2
        | let x = e1 in e2
        | \x -> e
        | e1 e2

v ::= n | (\x -> e)






Operational Semantics

           e1 => e1'
[App-L] ---------------
        e1 e2 => e1' e2

          e => e'
[App-R] -----------
        v e => v e'

[App] (\x -> e) v => e[x := v]





example:

((\x y -> x + y) 1) (1 + 2)
=> (\y -> 1 + y) (1 + 2)  -- [App-L]|[App]
=> (\y -> 1 + y) 3        -- [App-R]|[Add]
=> 1 + 3                  -- [App]
=> 4                      -- [Add]





Our rules implement call-by-value:


	evaluate the function (to a lambda)


	evaluate the arg (to some value)


	make the call: make a sub of formal to actual in body




the alternative is call-by-name:


	do not evaluate the argument before making the call


	let’s modify the rules to make it call by name!




modified call-by-name:

           e1 => e1'
[App-L] ---------------
        e1 e2 => e1' e2

[App] (\x -> e1) e2 => e1[x := e2]








Thms about Nano2


	not every program will terminate! think of the omega term


	programs can get stuck! what about 1 2?
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Type System

A type system defines what types an expression can have

To define a type system, we need to define:


	the syntax of types: what do types look like?


	the static semantics of our language (i.e. the typing rules): assign types to expressions





Syntax of Types

T ::= Int       -- integers
    | T1 -> T2  -- function types





Now, we define a typing relation e :: T (“e has type T”), inductively thru typing rules:

[T-Num] n :: Int

        e1 :: Int    e2 :: Int  -- premises
[T-Add] ----------------------
            e1 + e2 :: Int      -- conclusions

[T-Var] x :: ???








Type Environment

An expression has a type in a given type environment (or context), which maps all its free variables to their types:

G = x1:T1, x2:T2, ..., xn:Tn

-- now, our typing relation should include G:
G |- e :: T  -- e has type T in G








Typing Rules

An expression e has type T if we can derive G |- e :: T using these rules

An expression e is well-typed in G if we can derive G |- e :: T for some type T

-- typing rules using G
[T-Num] G |- n :: Int

        G |- e1 :: Int    G |- e2 :: Int
[T-Add] --------------------------------
            G |- e1 + e2 :: Int

[T-Var] G |- x :: T             if x:T in G

           G,x:T1 |- e :: T2
[T-Abs] ------------------------
        G |- \x -> e :: T1 -> T2

        G |- e1 :: T1 -> T2    G |- e2 :: T1
[T-App] ------------------------------------  -- modus ponens!
                G |- e1 e2 :: T2

        G |- e1 :: T1    G,x:T1 |- e2 :: T2
[T-Let] -----------------------------------
           G |- let x = e1 in e2 :: T2






Note

examples:

-- 1
[] |- (\x -> x) 2 :: Int

[T-Var]  -------------------
         [x:Int] |- x :: Int
[T-Abs]  -------------------              --------------  [T-Num]
         [] |- \x -> x :: Int -> Int      [] |- 2 :: Int
[T-App]  -----------------------------------------------
         [] |- (\x -> x) 2 :: Int

-- 2
[] |- let x = 1 in x + 2 :: Int

[T-Var] -----------------   -----------------[T-Num]
        x:Int |- x :: Int   x:Int |- 2 :: Int
[T-Num] --------------   ------------------------------------[T-Add]
        [] |- 1 :: Int   x:Int |- x + 2 :: Int
[T-Let] -----------------------------------
        [] |- let x = 1 in x + 2 :: Int





[] |- (\x -> x x) :: T is underivable, because T has to be equal to T -> T



According to these rules, an expression can have zero, one, or many types.

e.g. 1 2 has no types, 1 has 1 type, \x -> x has many types.

One problem with this system: there’s no generics.






Polymorphic Types

We can formalize a type a -> a as a polymorphic type: forall a . a -> a


	where a is a bound type variable


	also called a type scheme


	haskell has polymorphic types, but forall isn’t usually required




We can instantiate this scheme into different types by replacing a in the body with some type, e.g.
instantiating with Int yields Int -> Int.


Note

Similar to lambda expression at type level



With polymorphic types, we can derive e :: Int -> Int where e is

let id = \x -> x in
    let y = id 5 in
        id (\z -> z + y)





Inference works as follows:


	When we have to pick a type T for x, we pick a fresh type variable a


	So the type of \x -> x comes out as a -> a


	We can generalize this type to forall a . a -> a


	When we apply id the first time, we instantiate this polymorphic type with Int


	When we apply id the second time, we instantiate this polymorphic type with Int ->Int





Type System 3

Types:

-- Mono-types
T ::= Int
    | T1 -> T2
    | a             -- type variables

-- Poly-types
S ::= T             -- mono
    | forall a . S  -- polymorphic

-- where a ∈ TVar, T ∈ Type, S ∈ Poly






Type Environment

The type environment now maps variables to poly-types: G : Var -> Poly


	example, G = [z: Int, id: forall a . a -> a]







Type Substitutions

We need a mechanism for replacing all type variables in a type with another type:

A type substitution is a finite map from type variables to types: U : TVar -> Type


	example: U1 = [a / Int, b / (c -> c)]




To apply a substitution U to a type T means replace all type vars in T with whatever they are mapped to in U


	example 1: U1 (a -> a) = Int -> Int


	example 2: U1 Int = Int







Typing Rules

We need to change the typing rules so that:

-- 1. variables and their definitions can have polymorphic types
[T-Var] G |- x :: S          if x:S in G

        G |- e1 :: S   G, x:S |- e2 :: T
[T-Let] ------------------------------------
           G |- let x = e1 in e2 :: T

-- 2. we can instantiate a type scheme into a type
         G |- e :: forall a . S
[T-Inst] ----------------------
          G |- e :: [a / T] S

-- 3. we can generalize a type with free type variables into a type scheme
             G |- e :: S
[T-Gen] ---------------------- if not (a in FTV(G))  -- FTV = Free Type Variables
        G |- e :: forall a . S

-- the rest of the rules are the same:
[T-Num] G |- n :: Int

        G |- e1 :: Int    G |- e2 :: Int
[T-Add] --------------------------------
            G |- e1 + e2 :: Int

           G,x:T1 |- e :: T2
[T-Abs] ------------------------
        G |- \x -> e :: T1 -> T2

        G |- e1 :: T1 -> T2    G |- e2 :: T1
[T-App] ------------------------------------  -- modus ponens!
                G |- e1 e2 :: T2








Examples

-- derive: [] |- \x -> x :: forall a . a -> a

[T-Var] ---------------
        [x:a] |- x :: a
[T-Abs] -----------------------
        [] |- \x -> x :: a -> a
[T-Gen] ----------------------------------  not (a in FTV([]))
        [] |- \x -> x :: forall a . a -> a

-- derive: [x:a] |- x :: forall a . a
-- not derivable, since a is not in FTV([x:a])

-- derive: G1 |- id 5 :: Int where G1 = [id : (forall a . a -> a)]

[T-Var] -----------------------------
        G1 |- id :: forall a . a -> a
[T-Inst]----------------------         -------------- [T-Num]
        G1 |- id :: Int -> Int         G1 |- 5 :: Int
[T-App] ---------------------------------------------
        G1 |- id 5 :: Int

-- see slides page 12 for example 3










Representing Types

The eventual goal is to create a function infer, which:


	given a context G and an expression e,


	returns a type T s.t. G |- e :: T


	or reports a type error




data Type = TInt     -- int
    | Type :=> Type  -- T1 -> T2
    | Var String     -- a, b, c

data Poly = Mono Type
    | Forall TVar Poly

type TVar = String
type TEnv = [(Id, Poly)]  -- type environment
type Subst = [(String, Type)] -- type sub





Main idea: let’s implement infer like this:


	Depending on the kind of expression, find the typing rule that applies to it


	If the rule has premises, recursively call infer to obtain the types of subexpressions


	Combine the types of subexpressions according to the conclusion of the rule


	If no rule applies, report a type error




-- | This is not the final version!!!
infer :: TypeEnv -> Expr -> Type
infer _    (ENum _)     = TInt
infer tEnv (EVar var)   = lookup var tEnv
infer tEnv (EAdd e1 e2) =
    if t1 == TInt && t2 == TInt
        then return TInt
        else throw "type error: + expects Int operands"
    where
        t1 = infer tEnv e1
        t2 = infer tEnv e2





The problem is, some of our typing rules are nondeterministic (see slides pg. 13)


	guessing type




infer tEnv (ELam x e) = tX :=> tBody
    where
        tEnv' = extendTEnv x tX tEnv
        tX    = ???         -- ??????
        tBody = infer tEnv' e






	guessing when to generalize




solution:


	whenever we need to guess a type, don’t. just return a fresh type variable


	whenever a rule imposes a constraint on a type, try to find the right substitution for the free type vars to satisfy the constraint (unification)







Unification

The unification problem: given two types T1 and T2, find a type substitution U s.t. U T1 = U T2.

Such a substitution is called a unifier of T1 and T2.

e.g.:


	The unifier of a and Int is [a/Int]


	a -> a and Int -> Int is [a/Int]


	a -> Int and Int -> b is [a/Int, b/Int]


	Int and Int is []


	a and a is []


	Int and Int -> Int is invalid


	Int and a -> a is invalid


	a and a -> a is invalid


	b and a -> a is [b/a -> a]





Infer 2

To add constraint-based typing, we need to keep track of the current substitution:

-- | Now has to keep track of current substitution!
infer :: Subst -> TypeEnv -> Expr -> (Subst, Type)
infer sub _    (ENum _)     = (sub, TInt)
infer sub tEnv (EVar var)   = (sub, lookup var tEnv)

-- Lambda case: simply generate fresh type variable!
infer sub tEnv (ELam x e) = (sub1, tX' :=> tBody)
    where
        tEnv'          = extendTEnv x tX tEnv
        tX             = freshTV -- we'll get to this
        (sub1, tBody)  = infer sub tEnv' e
        tX'            = apply sub1 tX

-- Add case: recursively infer types of operands
-- and enforce constraint that they are both Int
infer sub tEnv (EAdd e1 e2) = (sub4, TInt)
    where
        (sub1, t1) = infer sub tEnv e1   -- 1. infer type of e1
        sub2       = unify sub1 t1 Int   -- 2. constraint: t1 is Int
        tEnv'      = apply sub2 tEnv     -- 3. apply subst to context (sets in scope)
        (sub3, t2) = infer sub2 tEnv' e2 -- 4. infer e2 type in new ctx
        sub4       = unify sub3 t2 Int   -- 5. constraint: t2 is Int






Note

Fresh Type Variables

How do you create a new fresh type variable every time? You’ll have to pass an argument along.








Polymorphism

When do we generalize a type like a -> a to forall a . a -> a?

When do we instantiate a polymorphic type and to what?

Generalization and Instantiation


	
	Whenever we infer a type for a let-defined variable, generalize it
	
	It’s safe, even when not necessary










	Whenever we see a variable with polymorphic type, instantiate it with a fresh type variable
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Intro

Let’s think about overloading operators - 1 + 1 and 1.0 + 1.1 work slightly differently

This is ad-hoc overloading - to compare/add values of multiple types

Note: Haskell has no caste system, so functions are first-class citizens; what class are operators then?




Qualified Types

:type (+)
(+) :: (Num a) => a -> a -> a





+ takes in any class that is an instance of or implements Num - Num is a predicate/constraint

A typeclass is a collection of operations that must exist for the underlying type.


Eq

class Eq a where
    (==) :: a -> a -> Bool
    (/=) :: a -> a -> Bool





A type a is an instance of Eq if these operations exist on it.






Creating Instances

data Unshowable = A | B | C

instance Eq Unshowable where
    (==) A A = True
    (==) B B = True
    (==) C C = True
    (==) _ _ = False
    (/=) x y = not (x == y)








Automatic Derivation

data Showable = A' | B' | C'
    deriving (Eq, Show)





Haskell can automatically generate instances!




Standard Typeclass Hierarchy

class (Eq a, Show a) => Num a where  -- all Nums must derive from Eq and Show
    (+) :: a -> a -> a
    ...








Using Typeclasses

Let’s build a small lib for environments mapping keys to values:

data Env k v
    = Def v  -- default
    | Bind k v (Env k v)  -- bind k to v, recursive structure
    deriving (Show)

-- API:
-- >>> let env0 = add "cat" 10.0 (add "dog" 20.0 (Def 0))

-- >>> get "cat" env0
-- 10

-- >>> get "dog" env0
-- 20

-- >>> get "horse" env0
-- 0

-- implementation:
add :: k -> v -> Env k v -> Env k v
add key val env = Bind key val env

get :: (Eq k) => k -> Env k v -> v  -- note that k has to derive Eq!
get key (Def v)          = v
get key (Bind ek ev env) | k == ek   = ev
                         | otherwise = get key env





What about an optimized version that stores keys in increasing order, to optimize add and get?


	the types of get and add: get :: (Ord k) => k -> Env k v -> v need to add Ord


	the type of Env: move the default so that we don’t have to recurse to the end







Explicit Signatures

In some cases using typeclasses, explicit signatures are required:

e.g. read :: (Read a) => String -> a, the opposite of Show

We have to do: (read "2") :: Int or (read "2") :: Float







          

      

      

    

  

    
      
          
            
  
Monads


Abstracting Code Patterns

Recall: the Map HOF works on lists

What if we wanted to, for example, show all elements of a tree?

mapList :: (a -> b) -> List a -> List b
mapTree :: (a -> b) -> Tree a -> Tree b
gmap    :: (Mappable t) => (a -> b) -> t a -> t b

class Functor where
    fmap :: (a -> b) -> t a -> t b

instance Functor [] where
    fmap = mapList

instance Functor Tree where
    fmap = mapList
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