

Welcome to cse116’s documentation!

Contents:

	Lambda Calculus
	Quizzes

	Reductions

	Normal Forms

	Semantics: Evaluation
	Examples

	Elsa Shortcuts
	Named lambda-terms

	Evaluation

	Non-Terminating Evaluation

	Lambda Calculus: Booleans

	Lambda Calculus: Records
	API

	Triples

	Lambda Calculus: Numbers
	Implementation
	Increment

	Add

	Mult

	Lambda Calculus: Recursion

	Haskell
	Quizzes

	What is Haskell?

	Guards

	Recursion

	Variable Scope
	Local Variables

	Types
	Type Annotations

	Lists
	Functions on List

	List Comprehensions

	Pairs

	Tuples

	Datatypes and Recursion
	Representing complex data

	Building Data Types
	Product Types

	Sum Types

	Recursive Types

	Constructing Datatypes

	Writing Functions
	Pattern Matching

	Case

	Recursive Types
	Using as Parameter

	Using as Result

	Lists

	Trees
	Functions on Trees

	Ex: Calculator

	Tail Recursion

	Higher-Order Functions
	Intro
	Recursion

	HOFs

	Filter

	Map

	Fold
	Fold-Right

	Fold-Left

	Flip

	Compose

	Environments & Closures
	Intro

	The Nano Language
	1. Arithmetic expressions
	Evaluator 1

	2. Variables and let-bindings
	Evaluator 2

	Runtime Errors

	3. Functions
	Evaluator 3

	4. Recursion

	Environments

	Closures

	Theorems about Programs
	Intro

	Formalizing Nano
	Nano1: Syntax

	Nano1: Operational Semantics

	Evaluation Order

	Evaluation Relation

	Nano1 Thms
	Induction on terms

	Induction on derivations

	Thm: Termination

	Nano2: Adding functions
	Operational Semantics

	Thms about Nano2

	Polymorphism & Type Inference
	Intro

	Type System
	Syntax of Types

	Type Environment

	Typing Rules

	Polymorphic Types
	Type System 3
	Type Environment

	Type Substitutions

	Typing Rules

	Examples

	Representing Types

	Unification
	Infer 2

	Polymorphism

	Type Classes
	Quizzes

	Intro

	Qualified Types
	Eq

	Creating Instances

	Automatic Derivation

	Standard Typeclass Hierarchy

	Using Typeclasses

	Explicit Signatures

	Monads
	Abstracting Code Patterns

Indices and tables

	Index

	Module Index

	Search Page

Lambda Calculus

Review: 9/26 - Lambda Calculus [https://docs.google.com/document/d/1VjnJagBNYv_BmEGZgROulERCcNDfIkiv20c7mZr_gns/edit#heading=h.m1n86y93ovps]

Slides [https://owenarden.github.io/cse116-fall19/slides/lambda.key.pdf]

	
occurrence

	an appearance of a variable in an expression (binding does not count)

Quizzes

tiny.cc/

cse116-lambda-ind -> A

cse116-scope-ind -> C

cse116-beta1-ind -> D

cse116-beta2-ind -> A

cse116-norm-ind -> C

cse116-church-ind -> A

cse116-add-ind -> A

cse116-mult-ind -> B

cse116-sum-ind -> NO

Reductions

	
alpha-reduction

	
	\x -> e =a> \y -> e[x := y]
	| where not (y in FV(e))

	
beta-reduction

	(\x -> e1) e2 =b> e1[x := e2]

“Replace all free occurrences of x in e1 with e2.”

x[x := e] = e
y[x := e] = y
(e1 e2)[x := e] = (e1[x := e]) (e2[x := e])
(\x -> e1)[x := e] = \x -> e1 -- since x in e1 is bound
(\y -> e1)[x := e]
 | not (y in FV(e)) = \y -> e1[x := e]
 | otherwise undefined

Normal Forms

A redex is a lambda-term of the form (\x -> e1) e2 (i.e. can be beta-reduced).

A lambda-term is in normal form if it contains no redexes (i.e. cannot be beta-reduced).

Semantics: Evaluation

A lambda-term e evaluates to e’ if:
1. There is a sequence of stops e =?> e_1 =?> ... =?> e'

Examples

(\x -> x) apple
 =b> apple

(\f -> f (\x -> x)) (\x -> x)
 =b> (\x -> x) (\x -> x)
 =b> \x -> x

(\x -> x x) (\x -> x)
 =b> (\x -> x) (\x -> x)
 =b> \x -> x

Elsa Shortcuts

Named lambda-terms

let ID = \x -> x

To substitute a name with its defn, use a =d> step

ID apple
 =d> \x -> x apple
 =b> apple

Evaluation

e1 =*> e2 - e1 reduces to e2 in 0 or more steps, where each step is in =a>, =b>, =d>

e1 =~> e2 - e1 evaluates to e2 (i.e. final output)

Non-Terminating Evaluation

(\x -> x x) (\x -> x x)
 =b> (\x -> x x) (\x -> x x)

Programs can loop and never reduce to normal form!

This is called the omega-term.

What if we pass omega to another function?

let OMEGA = (\x -> x x) (\x -> x x)
(\x -> \y -> y) OMEGA

Lambda Calculus: Booleans

How do we encode T/F as a func?

With booleans, we make a binary choice (e.g. if b then e1 else e2)

We need to define three functions:

let TRUE = \x y -> x
let FALSE = \x y -> y
let ITE = \b x y -> b x y

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana

eval ite_true:
 ITE TRUE e1 e2
 =d> (\b x y -> b x y) TRUE e1 e2
 =b> (\x y -> TRUE x y) e1 e2
 =b> (\y -> TRUE e1 y) e2
 =b> TRUE e1 e2
 =d> (\x y -> x) e1 e2
 =b> (\y -> e1) e2
 =b> e1

eval ite_false:
 ITE FALSE e1 e2
 =d> (\b x y -> b x y) FALSE e1 e2
 =b> (\x y -> FALSE x y) e1 e2
 =b> (\y -> FALSE e1 y) e2
 =b> FALSE e1 e2
 =d> (\x y -> y) e1 e2
 =b> (\y -> y) e2
 =b> e2

Now we can define other boolean operators:

let NOT = \b -> ITE b FALSE TRUE
let AND = \b1 b2 -> ITE b1 b2 FALSE
let OR = \b1 b2 -> ITE b1 TRUE b2

(ITE is redundant, so it can be removed from these defns)

Lambda Calculus: Records

	Start with records w/ 2 fields (pairs)

	
	What do we want to do?
	
	Pack two items into a pair

	Get first

	Get second

API

let PAIR = \x y -> (\b -> ITE b x y)
 -- a function that returns a function
 -- that takes a boolean asking which item you want
let FST = \p -> p TRUE
let SND = \p -> p FALSE

such that

FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana

Triples

let TRIPLE = \x y z -> PAIR x (PAIR y z)
let FST3 = \t -> FST t
let SND3 = \t -> FST (SND t)
let TRD3 = \t -> SND (SND t)

Lambda Calculus: Numbers

	What about natural numbers [0..]?

	Counters, arithmetic, comparisons

	+, -, *, ==, <=, etc

We need to define:

	a family of numerals ZERO, ONE, TWO, etc

	arithmetic functions INC, DEC, ADD, SUB, MULT

	comparisons IS_ZERO, EQ

Implementation

Church numerals: A number N is encoded as a combinator that calls a function on an argument N times

let ZERO = \f x -> x
let ONE = \f x -> f x
let TWO = \f x -> f (f x)
let THREE = \f x -> f (f (f x))
...etc

Increment

-- call `f` on `x` one more time than `n` does
let INC = \n -> (\f x -> f (n f x))

-- ex
INC ZERO
 =d> (\n f x -> f (n f x)) ZERO
 =b> \f x -> f (ZERO f x)
 =*> \f x -> f x
 =d> ONE

Add

let ADD = \n m -> n INC m
-- n is a function that takes a function and number
-- i.e. apply INC n times to m

-- ex
eval add_one_zero:
 ADD ONE ZERO
 =d> (\n m -> n INC m) ONE ZERO
 =b> (\m -> ONE INC m) ZERO
 =b> ONE INC ZERO
 =d> (\f x -> f x) INC ZERO
 =b> INC ZERO
 =*> ONE

eval add_two_one:
 ADD TWO ONE
 =d> (\n m -> n INC m) TWO ONE
 =b> (\m -> TWO INC m) ONE
 =b> TWO INC ONE
 =d> (\f x -> f (f x)) INC ONE
 =b> INC (INC ONE)
 =*> THREE

Mult

let MULT = \n m -> n (ADD m) ZERO
-- ADD m returns a function
-- so we call ADD m on ZERO n times
-- similar to python partials

-- ex
eval two_times_one:
 MULT TWO ONE
 =d> (\n m -> n (ADD m) ZERO) TWO ONE
 =b> (\m -> TWO (ADD m) ZERO) ONE
 =b> TWO (ADD ONE) ZERO
 =~> ADD ONE (ADD ONE ZERO)
 =~> TWO

Lambda Calculus: Recursion

Ex. I want to write a number that sums up natural numbers to n.

	\n -> ... -- = 1 + 2 + ... + n

Step 1: Pass in the function to call recursively

let STEP =
 \rec ->
 \n -> ITE (ISZ n)
 ZERO
 (ADD n (rec (DEC n)))

Step 2: Do something to STEP so that the function passed as rec becomes:

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

Note

Wanted: a combinator FIX s.t. FIX STEP calls STEP with itself as the first argument

FIX STEP
 =*> STEP (FIX STEP)

Note

It’s important that STEP has some base case in it, or else you end up with STEP (STEP (STEP (STEP...)))

then, let SUM = FIX STEP, so SUM =*> STEP SUM

eval sum_one:
 SUM ONE
 =*> STEP SUM ONE
 =d> (\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE
 =b> (\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE
 =b> ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))
 =*> ITE FALSE ZERO (ADD ONE (STEP SUM ZERO))
 =*> ADD ONE (SUM ZERO)
 =*> ADD ONE (STEP SUM ZERO)
 =d> ADD ONE ((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
 =b> ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)
 =b> ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))
 =*> ADD ONE (ITE TRUE ZERO (ADD ZERO (SUM (DEC ZERO))))
 =*> ADD ONE ZERO
 =~> ONE

So how do we define FIX?

	
	Let’s look back at omega:
	
	(\x -> x x) (\x -> x x) =b> (\x -> x x) (\x -> x x)

	We need something similar but with control

	Thus, the Y combinator (or fixpoint)

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

eval fix_step:
 FIX STEP
 =d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
 =b> (\x -> STEP (x x)) (\x -> STEP (x x))
 =b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
 =d> STEP (FIX STEP)

Note

Example: MULT using recursion

-- if we can use recursion by name:
let MULT x y =
 ITE (ISZ y)
 ZERO
 ADD x (MULT x (DECR y))

-- replace the self ref with a passed func
let MULT1 f x y =
 ITE (ISZ y)
 ZERO
 ADD x (f x (DECR y))

-- and use fixpt
let MULT = FIX MULT1

-- therefore, generally
let FUNC0 = \f n -> ... f (DECR n)
let FUNC = FIX FUNC0

Haskell

Slides [https://owenarden.github.io/cse116-fall19/slides/haskell.key.pdf]

Quizzes

cse116-pair-ind -> D

cse116-tpair-ind -> D

cse116-pattern-ind -> D

What is Haskell?

Haskell is a typed, lazy, purely functional language, with:

	types

	builtins (bools, numbers, chars)

	tuples

	lists

	recursion

Haskell v. lambda-calc:

	A program is an expression, not a sequence of statements

	it evaluates to a value, does not perform actions

	
	functions are first-class values
	
	can be passed as args

	can be returned from a func

	can be partially applied

	
	but there are things that aren’t funcs
	
	variable assignments/literals

	top level bindings

	you can also define funcs using equations

pair x y b = if b then x else y -- \x y b -> ITE b x y

	and patterns:

pair x y True = x
pair x y False = y

	a pattern is a variable (matches any value), or a value (matches that value)

	the above pattern is equivalent to:

pair x y True = x
pair x y b = y

pair x y True = x
pair x y _ = y -- wildcard: don't create binding

Guards

	an expression can have multiple guards (bool exp)

cmpSquare x y | x > y*y = "bigger"
 | x == y*y = "equal"
 | x < y*y = "smaller"

-- equals to
cmpSquare x y | x > y*y = "bigger"
 | x == y*y = "equal"
 | otherwise = "smaller"

Recursion

Is built in!

sum n = if n == 0
 then 0
 else n + sum (n - 1)

-- or
sum 0 = 0
sum n = n + sum (n - 1)

Variable Scope

	Top level vars have global scope

-- vars defined out of order
message = if foo
 then "bar"
 else "baz"
foo = True

-- mutual recursion
f 0 = True
f n = g (n - 1)

g 0 = False
g n = f (n - 1)

-- this is not allowed: immutable vars, can only be defined once per scope
foo = True
foo = False

Local Variables

You can introduce a new local scope using a let-expression

sum 0 = 0
sum n = let n' = n - 1 -- n' is only in scope in the in block
 in n + sum n'

-- multiple lets
sum 0 = 0
sum n = let
 n' = n - 1
 sum' = sum n'
 in n + sum'

If you need a var whose scope is an eqn, use where

cmpSquare x y | x > z = "bigger"
 | x == z = "equal"
 | x < z = "smaller"
 where z = y*y

Types

Lambda-calculus is untyped: for example, let FNORD = ONE ZERO.

In Haskell, every expression either has a type or is ill-typed and rejected statically (at compile-time)

Type Annotations

You can annotate bindings with types using ::

foo :: Bool
foo = True

message :: String
message = if foo
 then "bar"
 else "baz"

-- word-sized integer
rating :: Int
rating = if foo then 10 else 0

-- arbitrary precision int
something :: Integer
something = factorial 100

Functions have arrow types

> :t (\x -> if x then 'a' else 'b')
(\x -> if x then 'a' else 'b') :: Bool -> Char

-- annotate function bindings!
sum :: Int -> Int
sum 0 = 0
sum n = n + sum (n - 1)

-- multiple args
pair :: String -> (String -> (Bool -> String))
pair x y b = if b then x else y

-- same as
pair :: String -> String -> Bool -> String
pair x y b = if b then x else y

Lists

A list is:

-- an empty list
[] -- "nil"

-- a head element attached to a tail list
x:xs -- "x cons xs"

-- examples
[] -- a list with 0 elements

1:[] -- [1]

(:) 1 [] -- for any infix op, (op) is a regular function

1:(2:(3:(4:[]))) -- [1, 2, 3, 4]

1:2:3:4:[] -- same as above

[1,2,3,4] -- guess what this does

[] and (:) are the list constructors

	True and False are Bool constructors

	0, 1, 2 are… complicated, but basically Int constructors

	they take 0 args, so we call them values

A list has type [A] when each of its elements has type A

foo :: [Int]
foo = [1,2,3]

bar :: [Char] -- = String
bar = ['h', 'e', 'l', 'l', 'o'] -- = "hello"

generic :: [t]
generic = []

Functions on List

-- range
upto :: Int -> Int -> [Int]
upto n m
 | n > m = []
 | otherwise = n : (upto (n + 1) m)

-- syntactic sugar:
[1..7] -- = [1,2,3,4,5,6,7]
[1,3..7] -- = [1,3,5,7]

-- length
length :: [Int] -> Int
length [] = 0
length (_:xs) = 1 + length xs -- note: a pattern can be applied to other patterns

Pattern matching attempts to match values against patterns and, if desired, bind variables to successful values

List Comprehensions

[toUpper c | c <- s]
-- [toUpper(char) for c in s] in Python

[(i, j) | i <- [1..3],
 j <- [1..i]) -- multiple generators
-- [(i, j) for i in range(1, 4) for j in range(1, i+1)]

[(i, j) | i <- [1..3],
 j <- [1..i],
 i + j == 5) -- multiple generators with condition
-- [(i, j) for i in range(1, 4) for j in range(1, i+1) if i + j == 5]

Pairs

myPair :: (String, Int)
myPair = ("apple", 3)

(,) is the pair constructor

-- field access
fruit = fst myPair
num = snd myPair

-- field access using patterns
isEmpty (x, y) = y == 0

-- same as
isEmpty = \(x, y) -> y == 0
isEmpty p = let (x, y) = p in y == 0

What about:

f :: String -> [(String, Int)] -> Int
f _ [] = 0
f x ((k,v) : ps)
 | x == k = v
 | otherwise = f x ps

-- in Python: f = ((k,v) : ps).get(x, 0)
-- key-value pair lookups

Tuples

Go ahead and make n-tuples, they work pretty much as you expect

triple :: (Bool, Int, [Int])
triple = (True, 1, [1,2,3])

-- also
myUnit :: ()
myUnit = ()

Datatypes and Recursion

Slides [https://owenarden.github.io/cse116-fall19/slides/adt-rec.key.pdf]

Quizzes

cse116-para-ind -> C
cse116-adt-ind -> D
cse116-case-ind -> B
cse116-case2-ind -> D
cse116-rectype-ind -> E
cse116-tree-ind -> C
cse116-leaves-ind -> D
cse116-tail-ind -> NO

Representing complex data

	base/primitive types: int, float, bool, etc

	ways to build up types: functions, tuples, lists

Algebraic Data Types: a technique to build data types from these

Note

Tuples can do the job, but there are two problems:

	verbose and unreadable

	no type checking (unsafe)

type Date = (Int, Int, Int)
type Time = (Int, Int, Int)

deadDate :: Date
deadDate = (2, 4, 2019)

deadTime :: Time
deadTime = (11, 59, 59)

-- example: extend
extension :: Date -> Date
extension = ...

-- however, you can do
extension deadTime -- which should error!

Solution: construct datatypes

data Date = Date Int Int Int
data Time = Time Int Int Int
-- constructor ^ ^ param types

deadDate :: Date
deadDate = Date 2 4 2019

deadTime :: Time
deadTime = Time 11 59 59

Building Data Types

	Product types (each-of): a value of T contains a value of T1 and a value of T2

	Sum types (one-of): A value of T contains a value of T1 or a value of T2

	Recursive types: A value of T contains subvalues of type T

Product Types

You can name the constructor params:

data Date = Date {
 month :: Int,
 day :: Int,
 year :: Int
}

deadDate = Date 2 4 2019
deadMonth = month deadDate
-- field name is func that accesses date

Sum Types

e.g. a type for Paragraph that is one of the three options

data Paragraph =
 Text String
 | Heading Int String
 | List Bool [String]

Recursive Types

See recursive-types

Constructing Datatypes

data T =
 C1 T11 .. T1k

C2 T21 .. T2l

..

Cn Tn1 .. Tnm

T is the datatype

C1 .. Cn are the constructors

A value of type T is

	either C1 v1 .. vk with vi :: T1i

	or C2 v1 .. vl with vi :: T2i

	or …

	or Cn v1 .. vm with vi :: Tni

Writing Functions

e.g. how to write a function to convert nanoMD to HTML?

Pattern Matching

match on the constructor

html :: Paragraph -> String
html (Text str) = ...
html (Heading lvl str) = ...
html (List ord items) = ...

But, there are dangers:

-- example: missing a type
html :: Paragraph -> String
html (Text str) = ...
html (List ord items) = ...

html (Heading 1 "Introduction") -- runtime error!

You can also pattern match inside the program:

html :: Paragraph -> String
html p =
 case p of
 Text str -> ...
 Heading lvl str -> ...
 List ord items -> ...

Case

case e of
 pattern1 -> e1
 pattern2 -> e2
 ...
 patternN -> eN

has type T if:

	each e1..eN has type T

	e has some type D

	each pattern1..patternN is a valid pattern for D

Recursive Types

Let’s define natural numbers.

data Nat = Zero -- base constructor
 | Succ Nat -- inductive constructor

Zero -- 0
Succ Zero -- 1

A Nat value is a box named Zero or a box labeled Succ with another Nat in it

Using as Parameter

toInt :: Nat -> Int
toInt Zero = 0 -- base case
toInt (Succ n) = 1 + toInt n -- inductive case

Using as Result

fromInt :: Int -> Nat
fromInt n
 | n <= 0 = Zero
 | otherwise = Succ (fromInt (n - 1))

-- and operations
add :: Nat -> Nat -> Nat
add Zero m = m
add (Succ n) m = Succ (add n m)

sub :: Nat -> Nat -> Nat
sub n Zero = n
sub Zero _ = Zero
sub (Succ n) (Succ m) = sub n m

Lists

Lists aren’t built in!

data List = Nil
 | Cons Int List

[1, 2, 3] == Cons 1 (Cons 2 (Cons 3 Nil))

Ex. appending two lists

append :: List -> List -> List
append [] ys = ys
append (x:xs) ys = x:(append xs ys)

append2 :: List -> List -> List
append2 xs [] = xs
append2 xs (y:ys) = append xs:y ys

Trees

Think of lists as unary trees with elements stored in the nodes.
What about binary trees?

data Tree = Leaf | Node Int Tree Tree -- leaves don't store data!

t1234 = Node 1
 (Node 2 (Node 3 Leaf Leaf) Leaf)
 (Node 4 Leaf Leaf)

1 - 2 - 3 - ()
 | | \ ()
 | \ ()
 \ 4 - ()
 \ ()

Functions on Trees

depth :: Tree -> Int
depth Leaf = 0
depth (Node _ l r) = 1 + max (depth l) (depth r)

Ex: Calculator

Let’s implement an arithmetic calculator to eval things like 4.0 + 2.0, 3 - 9, (4.0 + 2.9) * (1.0 + 2.2)

data Expr = Val Float
 | Add Expr Expr
 | Sub Expr Expr
 | Mul Expr Expr

-- evaluate!
eval :: Expr -> Float
eval (Num f) = f
eval (Add e1 e2) = eval e1 + eval e2
eval (Sub e1 e2) = eval e1 - eval e2
eval (Mul e1 e2) = eval e1 * eval e2

Tail Recursion

Whatever the recursive call returns will be what the expression returns.
No computations are allowed on recursively returned values.

-- tail recursive factorial!
facTR :: Int -> Int
facTR n = loop 1 n
 where
 loop :: Int -> Int -> Int
 loop acc n
 | n <= 1 = acc
 | otherwise = loop (acc * n) (n - 1)

-- <facTR 4>
-- <<loop 1 4>>
-- <<<loop 4 3>>>
-- <<<<loop 12 2>>>>
-- <<<<<loop 24 1>>>>>
-- <<<<<<24>>>>>>

Higher-Order Functions

Intro

Slides [https://owenarden.github.io/cse116-fall19/slides/hof.key.pdf]

Quizzes

cse116-map-ind -> D

cse116-quiz-ind -> D

cse116-foldeval-ind -> B

cse116-foldtype-ind -> D

cse116-foldl2-ind ->

In this lecture: code reuse with higher-order functions (HOFs)

e.g.: map, filter, fold

Recursion

Gets pretty old pretty quickly!

Ex. a function that finds all even nums in a list

evens :: [Int] -> [Int]
evens [] = []
evens (x:xs) | x `mod` 2 == 0 = x:(evens xs)
 | otherwise = evens xs

or a function that filters 4 letter words

fourChars :: [Int] -> [Int]
fourChars [] = []
fourChars (x:xs) | (length x) == 4 = x:(fourChars xs)
 | otherwise = fourChars xs

HOFs

HOFs are a general pattern expressed as a HOF that takes customizable args, applied multiple times

Filter

filter :: (a -> Bool) -> [a] -> [a] -- polymorphic type!
filter f [] = []
filter f (x:xs)
 | f x = x:(filter f xs)
 | otherwise = filter f xs

-- now we can:
evens = filter isEven
 where isEven x = x `mod` 2 == 0

fourChars = filter isFour
 where isFour x = length x == 4

Map

Ex: we want to do some op on every elem

-- boring!
shout [] = []
shout (x:xs) = toUpper x : shout xs

square [] = []
square (x:xs) = x * x : square xs

Let’s do this!

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

-- so
shout = map (\x -> toUpper x)
square = map (\x -> x*x)

Fold

Ex: length/sum of a list

How about joining a list of strings?

cat :: [String] -> String
cat [] = ""
cat (x:xs) = x ++ cat xs

Fold-Right

This is fold-right!

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f b [] = b
foldr f b (x:xs) = f x (foldr f b xs)

-- so:
sum = foldr (+) 0
cat = foldr (++) ""
len = foldr (\x n -> 1 + n) 0

It’s called this because it accumulates from the right (expansion is right associative)

Fold-Left

What about tail recursive versions?

-- tail recursive cat!
catTR :: [String] -> String
catTR xs = helper "" xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (acc ++ x) xs

so:

foldl :: (a -> b -> b) -> b -> [a] -> b
foldl f b xs = helper b xs
 where
 helper acc [] = acc
 helper acc (x:xs) = helper (f acc x) xs

-- so, syntax is the same as foldr:
sumTR = foldl (+) 0
catTR = foldl (++) ""

Flip

Useful HOF:

-- instead of writing:
foldl (\xs x -> x : xs) [] [1, 2, 3]

-- write:
foldl (flip (:)) [] [1, 2, 3]

flip :: (a -> b -> c) -> (b -> a -> c)

Compose

map (\x -> f (g x)) ys
-- ==
map (f . g) ys

(.) :: (b -> c) -> (a -> b) -> a -> c

Environments & Closures

Intro

Slides [https://owenarden.github.io/cse116-fall19/slides/env.key.pdf]

Quizzes

cse116-vars-ind -> E

cse116-free-ind -> B

cse116-cscope-ind -> B

cse116-env-ind -> A

cse116-enveval-ind -> D

cse116-enveval2-ind -> C

The Nano Language

Features of Nano:

1. Arithmetic expressions

Evaluator 1

e ::= n
 | e1 + e2
 | e1 - e2
 | e1 * e2

-- haskell representation:
data Binop = Add | Sub | Mul
data Expr = Num Int
 | Bin Binop Expr Expr

-- evaluator:
eval :: Expr -> Int
eval (Num n) = n
eval (Bin Add e1 e2) = eval e1 + eval e2
eval (Bin Sub e1 e2) = eval e1 - eval e2
eval (Bin Mul e1 e2) = eval e1 * eval e2

2. Variables and let-bindings

e ::= n | x
 | e1 + e2 | e1 - e2 | e1 * e2
 | let x = e1 in e2

-- haskell representation:
type Id = String

data Expr = Num Int -- number
 | Var Id -- variable
 | Bin Binop Expr Expr -- binary op
 | Let Id Expr Expr -- let expr

thus, expressions must be evaluated in Environments

Evaluator 2

Previous implementation: Evaluator 1

type Value = Int
data Env = ...

-- add new id/value to env
add :: Id -> Value -> Env -> Env

-- lookup id in env
lookup :: Id -> Env -> Value

-- evaluator:
eval :: Env -> Expr -> Value
eval env (Num n) = n
eval env (Var x) = lookup x env
eval env (Bin op e1 e2) = f v1 v2
 where
 v1 = eval env e1
 v2 = eval env e2
 f = case op of
 Add -> (+)
 Sub -> (-)
 Mul -> (*)
eval env (Let x e1 e2) = eval env' e2
 where
 v = eval env e1
 env' = add x v env

Runtime Errors

Lookups can fail when a var is not bound!

How do we ensure that it doesn’t raise a runtime error?

In eval env e, env must contain bindings for all free vars of e. Evaluation only succeeds when all expressions are closed.

3. Functions

Let’s add lambda abstractions and function application!

e ::= n | x
 | e1 + e2 | e1 - e2 | e1 * e2
 | let x = e1 in e2
 | \x -> e -- abstraction
 | e1 e2 -- application

-- haskell representation:
data Expr = Num Int -- number
 | Var Id -- variable
 | Bin Binop Expr Expr -- binary op
 | Let Id Expr Expr -- let expr
 | Lam Id Expr -- abstraction
 | App Expr Expr -- application

Note

Now, let’s try to evaluate something…

eval [] {let c = 42 in let cTimes = \x -> c * x in cTimes 2}
=> eval [c:42] {let cTimes = \x -> c * x in cTimes 2}
=> eval [cTimes:???, c:42] {cTimes 2}

How do we represent lambdas as a value? Let’s try data Value = VNum Int | VLam Id Expr and evaluate…

eval [] {let c = 42 in let cTimes = \x -> c * x in cTimes 2}
=> eval [c:42] {let cTimes = \x -> c * x in cTimes 2}
=> eval [cTimes:(\x -> c * x), c:42] {cTimes 2}
=> eval [cTimes:(\x -> c * x), c:42] {(\x -> c * x) 2}
=> eval [x:2, cTimes:(\x -> c * x), c:42] {x * c}
=> 42 * 2
=> 84

But what if c is redefined before cTimes is used?

The problem that this brings up is static v. dynamic scoping; static scoping = most recent binding in text,
whereas dynamic = most recent binding in execution

How do we implement lexical scoping? See Closures

Now let’s update our evaluator! Previous implementation: Evaluator 2

Evaluator 3

data Value = VNum Int -- new!
 | VClos Env Id Expr -- env + formal + body

eval :: Env -> Expr -> Value
eval env (Num n) = VNum n -- we must wrap in VNum now!
eval env (Var x) = lookup x env
eval env (Bin op e1 e2) = VNum (f v1 v2)
 where
 (VNum v1) = eval env e1
 (VNum v2) = eval env e2
 f = case op of
 Add -> (+)
 Sub -> (-)
 Mul -> (*)
eval env (Let x e1 e2) = eval env' e2
 where
 v = eval env e1
 env' = add x v env
-- new!
eval env (Lam x body) = VClos env x body
eval env (App fun arg) = eval bodyEnv body
 where
 (VClos closEnv x body) = eval env fun -- eval function to closure
 vArg = eval env arg -- eval argument
 bodyEnv = add x vArg closEnv

But note: this evaluator doesn’t cover recursion!

4. Recursion

We have to do this in homework, yay! See hw4.

Environments

an environment maps all free vars to values

x * y
=[x:17, y:2]=> 34

x * y
=[x:17]=> Error: unbound var y

x * (let y = 2 in y)
=[x:17]=> 34

To evaluate let x = e1 in e2 in env:

	evaluate e2 in an extended env env + [x:v]

	where v = eval e1

Closures

Closure = lambda abstraction (formal + body) + environment at function definition

a closure environment must save all free variables of a function defn!

data Value = VNum Int
 | VClos Env Id Expr -- env + formal + body

-- our syntax:
-- binding:<env, lambda>

-- now, eval:
eval [] {let c = 42 in let cTimes = \x -> c * x in let c = 5 in cTimes 2}
 => eval [c:42] {let cTimes = \x -> c * x in let c = 5 in cTimes 2}
 => eval [cTimes:<[c:42], \x -> c * x>, c:42] {let c = 5 in cTimes 2}
 => eval [c:5, cTimes:<[c:42], \x -> c * x>, c:42] {cTimes 2}
 => eval [c:5, cTimes:<[c:42], \x -> c * x>, c:42] {<[c:42], \x -> c * x> 2}
 -- restore env to the one inside the closure, then bind 2 to x:
 => eval [x:2, c:42] {c * x}
 => 42 * 2
 => 84

Theorems about Programs

Intro

Slides [https://owenarden.github.io/cse116-fall19/slides/formal.key.pdf]

Quizzes

cse116-reduce-ind -> A

cse116-induct-ind -> B

cse116-reduce2-ind -> E

cse116-nano2-ind -> D

[Add] --
 1 + 2 => 3
[Let-Def] --
 (let x = 1 + 2 in 4 + 5 + x) => (let x = 3 in 4 + 5 + x)

Formalizing Nano

We want to be able to guarantee properties about programs, such as:

	evaluation is deterministic

	all programs terminate

	certain programs never fail at runtime

	etc.

To prove theorems about programs we first need to define formally

	their syntax (what programs look like)

	their semantics (what it means to run a program)

Let’s start with Nano1 (Nano w/o functions) and prove some stuff!

Nano1: Syntax

e ::= n | x -- expressions
 | e1 + e2
 | let x = e1 in e2

v ::= n -- values

where n ∈ ℕ, x ∈ Var

Nano1: Operational Semantics

Operational semantics defines how to execute a program step by step

Let’s define a step relation (reduction relation) e => e’

	expression e makes a step (reduces in one step) to an expression e’

We define the step relation inductively through a set of rules:

 e1 => e1' -- premise
[Add-L] -------------------
 e1 + e2 => e1' + e2 -- conclusion

 e2 => e2'
[Add-R] -------------------
 n1 + e2 => n1 + e2'

[Add] n1 + n2 => n where n == n1 + n2

 e1 => e1'
[Let-Def] -------------------------------------
 let x = e1 in e2 => let x = e1' in e2

[Let] let x = v in e2 => e2[x := v]

and we can define e[x := v] as:

x[x := v] = v
y[x := v] = y
n[x := v] = n
(e1 + e2)[x := v] = e1[x := v] + e2 [x := v]
(let x = e1 in e2)[x := v] = let x = e1[x := v] in e2
(let y = e1 in e2)[x := v] = let x = e1[x := v] in e2[x := v]

A reduction is valid if we can build its derivation by stacking the rules:

 [Add] --------------------
 1 + 2 => 3
[Add-L] --------------------
 (1 + 2) + 5 => 3 + 5

Note: we don’t have reduction rules for n or x, since both these expressions cannot be further reduced (normal).

However, x is not a value, and if the final result is that, it’s a runtime error (stuck)

Evaluation Order

Out of these expressions, only the first is valid:

	(1 + 2) + (3 + 4) => 3 + (3 + 4)

	(1 + 2) + (3 + 4) => (1 + 2) + 7

since expression 1 has a derivation, but expr 2 does not:

 [Add] --------------------------------
 1 + 2 => 3
[Add-L] --------------------------------
 (1 + 2) + (3 + 4) => 3 + (3 + 4)

-- but:
 [???] --------------------------------
 (1 + 2) + (3 + 4) => (1 + 2) + 7

Evaluation Relation

Like in lambda calc, we define the multi-step reduction relation e =*> e':

e =*> e' iff there exists a sequence of expressions e1..en` s.t. ``e1 = e, en = e', ei => e(i+1)

Similarly, we can define evaluation relations e =~> e'.

Nano1 Thms

Let’s prove:

	every Nano1 program terminates

	Closed Nano1 programs don’t get stuck

	(corollary 1+2): closed nano programs evaluate to a value

using induction!

Induction on terms

e ::= n | x
 | e1 + e2
 | let x = e1 in e2

To prove \forall e.P(e), we need to prove:

	BS 1: P(n)

	BS 2: P(x)

	IS 1: P(e1 + e2) assuming P(e1) and P(e2)

	IS 2: P(let x = e1 in e2) assuming P(e1) and P(e2)

Induction on derivations

The relation => is also defined inductively:

	axioms are base cases ([Add], [Let])

	rules with premises are inductive cases ([Add-L], [Add-R], [Let-Def])

Thm: Termination

Thm 1: For any expression e, there exists e' s.t. e =~> e'.

Let’s define the size of an expression s.t.:

	size of each expression is positive

	each reduction step strictly decreases the size

size n = 1
size x = 1
size (e1 + e2) = size e1 + size e2
size (let x = e1 in e2) = size e1 + size e2

Lemma 1: For all e, size e > 0.

	BS 1: size n = 1 > 0.

	BS 2: size x = 1 > 0.

	IS 1: size (e1 + e2) = size e1 + size e2 > 0 because size e1 > 0 and size e2 > 0 by IH.

	IS 2: similar.

Lemma 2: For any e, e' s.t. e => e', size e' < size e.

Proof: by induction on the derivation of e => e'.

Base case: [Add]

	Given: the root of the derivation is [Add]: n1 + n2 => n where n = n1 + n2.

	To prove: size n < size (n1 + n2)

	1 < 2.

Inductive case: [Add-L]

	Given: the root of the derivation is [Add-L]: (defn [Add-L].)

	To prove: size (e1' + e2) < size (e1 + e2)

	IH: size e1' < size e1

	size e1' + size e2 < size e1 + size e2 by addition

	size (e1' + e2) < size (e1 + e2) by defn of size. QED.

Base case: [Let]

	Given: root of the derivation is [Let]: let x = v in e2 => e2[x := v]

	Prove: size (e2[x := v]) < size (let x = v in e2)

	size (e2[x := v]) = size e2 by aux lemma

	size (let x = v in e2) = size v + size e2 by defn

	size e2 < size v + size e2 by lemma 1

	therefore, size (e2[x := v]) < size (let x = v in e2)

Nano2: Adding functions

Let’s extend the syntax:

e ::= n | x -- expressions
 | e1 + e2
 | let x = e1 in e2
 | \x -> e
 | e1 e2

v ::= n | (\x -> e)

Operational Semantics

 e1 => e1'
[App-L] ---------------
 e1 e2 => e1' e2

 e => e'
[App-R] -----------
 v e => v e'

[App] (\x -> e) v => e[x := v]

example:

((\x y -> x + y) 1) (1 + 2)
=> (\y -> 1 + y) (1 + 2) -- [App-L]|[App]
=> (\y -> 1 + y) 3 -- [App-R]|[Add]
=> 1 + 3 -- [App]
=> 4 -- [Add]

Our rules implement call-by-value:

	evaluate the function (to a lambda)

	evaluate the arg (to some value)

	make the call: make a sub of formal to actual in body

the alternative is call-by-name:

	do not evaluate the argument before making the call

	let’s modify the rules to make it call by name!

modified call-by-name:

 e1 => e1'
[App-L] ---------------
 e1 e2 => e1' e2

[App] (\x -> e1) e2 => e1[x := e2]

Thms about Nano2

	not every program will terminate! think of the omega term

	programs can get stuck! what about 1 2?

Polymorphism & Type Inference

Intro

Slides [https://owenarden.github.io/cse116-fall19/slides/types.key.pdf]

Quizzes

cse116-nanotype-ind -> D1

cse116-typed-ind -> B

cse116-subst-ind -> B

cse116-unify-ind -> C, D, E

cse116-infer-ind -> E

Type System

A type system defines what types an expression can have

To define a type system, we need to define:

	the syntax of types: what do types look like?

	the static semantics of our language (i.e. the typing rules): assign types to expressions

Syntax of Types

T ::= Int -- integers
 | T1 -> T2 -- function types

Now, we define a typing relation e :: T (“e has type T”), inductively thru typing rules:

[T-Num] n :: Int

 e1 :: Int e2 :: Int -- premises
[T-Add] ----------------------
 e1 + e2 :: Int -- conclusions

[T-Var] x :: ???

Type Environment

An expression has a type in a given type environment (or context), which maps all its free variables to their types:

G = x1:T1, x2:T2, ..., xn:Tn

-- now, our typing relation should include G:
G |- e :: T -- e has type T in G

Typing Rules

An expression e has type T if we can derive G |- e :: T using these rules

An expression e is well-typed in G if we can derive G |- e :: T for some type T

-- typing rules using G
[T-Num] G |- n :: Int

 G |- e1 :: Int G |- e2 :: Int
[T-Add] --------------------------------
 G |- e1 + e2 :: Int

[T-Var] G |- x :: T if x:T in G

 G,x:T1 |- e :: T2
[T-Abs] ------------------------
 G |- \x -> e :: T1 -> T2

 G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] ------------------------------------ -- modus ponens!
 G |- e1 e2 :: T2

 G |- e1 :: T1 G,x:T1 |- e2 :: T2
[T-Let] -----------------------------------
 G |- let x = e1 in e2 :: T2

Note

examples:

-- 1
[] |- (\x -> x) 2 :: Int

[T-Var] -------------------
 [x:Int] |- x :: Int
[T-Abs] ------------------- -------------- [T-Num]
 [] |- \x -> x :: Int -> Int [] |- 2 :: Int
[T-App] ---
 [] |- (\x -> x) 2 :: Int

-- 2
[] |- let x = 1 in x + 2 :: Int

[T-Var] ----------------- -----------------[T-Num]
 x:Int |- x :: Int x:Int |- 2 :: Int
[T-Num] -------------- ------------------------------------[T-Add]
 [] |- 1 :: Int x:Int |- x + 2 :: Int
[T-Let] -----------------------------------
 [] |- let x = 1 in x + 2 :: Int

[] |- (\x -> x x) :: T is underivable, because T has to be equal to T -> T

According to these rules, an expression can have zero, one, or many types.

e.g. 1 2 has no types, 1 has 1 type, \x -> x has many types.

One problem with this system: there’s no generics.

Polymorphic Types

We can formalize a type a -> a as a polymorphic type: forall a . a -> a

	where a is a bound type variable

	also called a type scheme

	haskell has polymorphic types, but forall isn’t usually required

We can instantiate this scheme into different types by replacing a in the body with some type, e.g.
instantiating with Int yields Int -> Int.

Note

Similar to lambda expression at type level

With polymorphic types, we can derive e :: Int -> Int where e is

let id = \x -> x in
 let y = id 5 in
 id (\z -> z + y)

Inference works as follows:

	When we have to pick a type T for x, we pick a fresh type variable a

	So the type of \x -> x comes out as a -> a

	We can generalize this type to forall a . a -> a

	When we apply id the first time, we instantiate this polymorphic type with Int

	When we apply id the second time, we instantiate this polymorphic type with Int ->Int

Type System 3

Types:

-- Mono-types
T ::= Int
 | T1 -> T2
 | a -- type variables

-- Poly-types
S ::= T -- mono
 | forall a . S -- polymorphic

-- where a ∈ TVar, T ∈ Type, S ∈ Poly

Type Environment

The type environment now maps variables to poly-types: G : Var -> Poly

	example, G = [z: Int, id: forall a . a -> a]

Type Substitutions

We need a mechanism for replacing all type variables in a type with another type:

A type substitution is a finite map from type variables to types: U : TVar -> Type

	example: U1 = [a / Int, b / (c -> c)]

To apply a substitution U to a type T means replace all type vars in T with whatever they are mapped to in U

	example 1: U1 (a -> a) = Int -> Int

	example 2: U1 Int = Int

Typing Rules

We need to change the typing rules so that:

-- 1. variables and their definitions can have polymorphic types
[T-Var] G |- x :: S if x:S in G

 G |- e1 :: S G, x:S |- e2 :: T
[T-Let] ------------------------------------
 G |- let x = e1 in e2 :: T

-- 2. we can instantiate a type scheme into a type
 G |- e :: forall a . S
[T-Inst] ----------------------
 G |- e :: [a / T] S

-- 3. we can generalize a type with free type variables into a type scheme
 G |- e :: S
[T-Gen] ---------------------- if not (a in FTV(G)) -- FTV = Free Type Variables
 G |- e :: forall a . S

-- the rest of the rules are the same:
[T-Num] G |- n :: Int

 G |- e1 :: Int G |- e2 :: Int
[T-Add] --------------------------------
 G |- e1 + e2 :: Int

 G,x:T1 |- e :: T2
[T-Abs] ------------------------
 G |- \x -> e :: T1 -> T2

 G |- e1 :: T1 -> T2 G |- e2 :: T1
[T-App] ------------------------------------ -- modus ponens!
 G |- e1 e2 :: T2

Examples

-- derive: [] |- \x -> x :: forall a . a -> a

[T-Var] ---------------
 [x:a] |- x :: a
[T-Abs] -----------------------
 [] |- \x -> x :: a -> a
[T-Gen] ---------------------------------- not (a in FTV([]))
 [] |- \x -> x :: forall a . a -> a

-- derive: [x:a] |- x :: forall a . a
-- not derivable, since a is not in FTV([x:a])

-- derive: G1 |- id 5 :: Int where G1 = [id : (forall a . a -> a)]

[T-Var] -----------------------------
 G1 |- id :: forall a . a -> a
[T-Inst]---------------------- -------------- [T-Num]
 G1 |- id :: Int -> Int G1 |- 5 :: Int
[T-App] ---
 G1 |- id 5 :: Int

-- see slides page 12 for example 3

Representing Types

The eventual goal is to create a function infer, which:

	given a context G and an expression e,

	returns a type T s.t. G |- e :: T

	or reports a type error

data Type = TInt -- int
 | Type :=> Type -- T1 -> T2
 | Var String -- a, b, c

data Poly = Mono Type
 | Forall TVar Poly

type TVar = String
type TEnv = [(Id, Poly)] -- type environment
type Subst = [(String, Type)] -- type sub

Main idea: let’s implement infer like this:

	Depending on the kind of expression, find the typing rule that applies to it

	If the rule has premises, recursively call infer to obtain the types of subexpressions

	Combine the types of subexpressions according to the conclusion of the rule

	If no rule applies, report a type error

-- | This is not the final version!!!
infer :: TypeEnv -> Expr -> Type
infer _ (ENum _) = TInt
infer tEnv (EVar var) = lookup var tEnv
infer tEnv (EAdd e1 e2) =
 if t1 == TInt && t2 == TInt
 then return TInt
 else throw "type error: + expects Int operands"
 where
 t1 = infer tEnv e1
 t2 = infer tEnv e2

The problem is, some of our typing rules are nondeterministic (see slides pg. 13)

	guessing type

infer tEnv (ELam x e) = tX :=> tBody
 where
 tEnv' = extendTEnv x tX tEnv
 tX = ??? -- ??????
 tBody = infer tEnv' e

	guessing when to generalize

solution:

	whenever we need to guess a type, don’t. just return a fresh type variable

	whenever a rule imposes a constraint on a type, try to find the right substitution for the free type vars to satisfy the constraint (unification)

Unification

The unification problem: given two types T1 and T2, find a type substitution U s.t. U T1 = U T2.

Such a substitution is called a unifier of T1 and T2.

e.g.:

	The unifier of a and Int is [a/Int]

	a -> a and Int -> Int is [a/Int]

	a -> Int and Int -> b is [a/Int, b/Int]

	Int and Int is []

	a and a is []

	Int and Int -> Int is invalid

	Int and a -> a is invalid

	a and a -> a is invalid

	b and a -> a is [b/a -> a]

Infer 2

To add constraint-based typing, we need to keep track of the current substitution:

-- | Now has to keep track of current substitution!
infer :: Subst -> TypeEnv -> Expr -> (Subst, Type)
infer sub _ (ENum _) = (sub, TInt)
infer sub tEnv (EVar var) = (sub, lookup var tEnv)

-- Lambda case: simply generate fresh type variable!
infer sub tEnv (ELam x e) = (sub1, tX' :=> tBody)
 where
 tEnv' = extendTEnv x tX tEnv
 tX = freshTV -- we'll get to this
 (sub1, tBody) = infer sub tEnv' e
 tX' = apply sub1 tX

-- Add case: recursively infer types of operands
-- and enforce constraint that they are both Int
infer sub tEnv (EAdd e1 e2) = (sub4, TInt)
 where
 (sub1, t1) = infer sub tEnv e1 -- 1. infer type of e1
 sub2 = unify sub1 t1 Int -- 2. constraint: t1 is Int
 tEnv' = apply sub2 tEnv -- 3. apply subst to context (sets in scope)
 (sub3, t2) = infer sub2 tEnv' e2 -- 4. infer e2 type in new ctx
 sub4 = unify sub3 t2 Int -- 5. constraint: t2 is Int

Note

Fresh Type Variables

How do you create a new fresh type variable every time? You’ll have to pass an argument along.

Polymorphism

When do we generalize a type like a -> a to forall a . a -> a?

When do we instantiate a polymorphic type and to what?

Generalization and Instantiation

	
	Whenever we infer a type for a let-defined variable, generalize it
	
	It’s safe, even when not necessary

	Whenever we see a variable with polymorphic type, instantiate it with a fresh type variable

Type Classes

Slides [https://owenarden.github.io/cse116-fall19/slides/typeclasses.pdf]

Quizzes

cse116-plus-type-ind -> E

cse116-ord-ind -> C

cse116-read-ind -> A

Intro

Let’s think about overloading operators - 1 + 1 and 1.0 + 1.1 work slightly differently

This is ad-hoc overloading - to compare/add values of multiple types

Note: Haskell has no caste system, so functions are first-class citizens; what class are operators then?

Qualified Types

:type (+)
(+) :: (Num a) => a -> a -> a

+ takes in any class that is an instance of or implements Num - Num is a predicate/constraint

A typeclass is a collection of operations that must exist for the underlying type.

Eq

class Eq a where
 (==) :: a -> a -> Bool
 (/=) :: a -> a -> Bool

A type a is an instance of Eq if these operations exist on it.

Creating Instances

data Unshowable = A | B | C

instance Eq Unshowable where
 (==) A A = True
 (==) B B = True
 (==) C C = True
 (==) _ _ = False
 (/=) x y = not (x == y)

Automatic Derivation

data Showable = A' | B' | C'
 deriving (Eq, Show)

Haskell can automatically generate instances!

Standard Typeclass Hierarchy

class (Eq a, Show a) => Num a where -- all Nums must derive from Eq and Show
 (+) :: a -> a -> a
 ...

Using Typeclasses

Let’s build a small lib for environments mapping keys to values:

data Env k v
 = Def v -- default
 | Bind k v (Env k v) -- bind k to v, recursive structure
 deriving (Show)

-- API:
-- >>> let env0 = add "cat" 10.0 (add "dog" 20.0 (Def 0))

-- >>> get "cat" env0
-- 10

-- >>> get "dog" env0
-- 20

-- >>> get "horse" env0
-- 0

-- implementation:
add :: k -> v -> Env k v -> Env k v
add key val env = Bind key val env

get :: (Eq k) => k -> Env k v -> v -- note that k has to derive Eq!
get key (Def v) = v
get key (Bind ek ev env) | k == ek = ev
 | otherwise = get key env

What about an optimized version that stores keys in increasing order, to optimize add and get?

	the types of get and add: get :: (Ord k) => k -> Env k v -> v need to add Ord

	the type of Env: move the default so that we don’t have to recurse to the end

Explicit Signatures

In some cases using typeclasses, explicit signatures are required:

e.g. read :: (Read a) => String -> a, the opposite of Show

We have to do: (read "2") :: Int or (read "2") :: Float

Monads

Abstracting Code Patterns

Recall: the Map HOF works on lists

What if we wanted to, for example, show all elements of a tree?

mapList :: (a -> b) -> List a -> List b
mapTree :: (a -> b) -> Tree a -> Tree b
gmap :: (Mappable t) => (a -> b) -> t a -> t b

class Functor where
 fmap :: (a -> b) -> t a -> t b

instance Functor [] where
 fmap = mapList

instance Functor Tree where
 fmap = mapList

Index

 O

O

 	
 	occurrence (built-in variable)

 nav.xhtml

 Table of Contents

 		
 Welcome to cse116’s documentation!

 		
 Lambda Calculus

 		
 Quizzes

 		
 Reductions

 		
 Normal Forms

 		
 Semantics: Evaluation

 		
 Examples

 		
 Elsa Shortcuts

 		
 Non-Terminating Evaluation

 		
 Lambda Calculus: Booleans

 		
 Lambda Calculus: Records

 		
 API

 		
 Triples

 		
 Lambda Calculus: Numbers

 		
 Implementation

 		
 Lambda Calculus: Recursion

 		
 Haskell

 		
 Quizzes

 		
 What is Haskell?

 		
 Guards

 		
 Recursion

 		
 Variable Scope

 		
 Local Variables

 		
 Types

 		
 Type Annotations

 		
 Lists

 		
 Pairs

 		
 Tuples

 		
 Datatypes and Recursion

 		
 Representing complex data

 		
 Building Data Types

 		
 Product Types

 		
 Sum Types

 		
 Recursive Types

 		
 Constructing Datatypes

 		
 Writing Functions

 		
 Pattern Matching

 		
 Case

 		
 Recursive Types

 		
 Using as Parameter

 		
 Using as Result

 		
 Lists

 		
 Trees

 		
 Tail Recursion

 		
 Higher-Order Functions

 		
 Intro

 		
 Recursion

 		
 HOFs

 		
 Filter

 		
 Map

 		
 Fold

 		
 Fold-Right

 		
 Fold-Left

 		
 Flip

 		
 Compose

 		
 Environments & Closures

 		
 Intro

 		
 The Nano Language

 		
 1. Arithmetic expressions

 		
 2. Variables and let-bindings

 		
 3. Functions

 		
 4. Recursion

 		
 Environments

 		
 Closures

 		
 Theorems about Programs

 		
 Intro

 		
 Formalizing Nano

 		
 Nano1: Syntax

 		
 Nano1: Operational Semantics

 		
 Evaluation Order

 		
 Evaluation Relation

 		
 Nano1 Thms

 		
 Thm: Termination

 		
 Nano2: Adding functions

 		
 Operational Semantics

 		
 Thms about Nano2

 		
 Polymorphism & Type Inference

 		
 Intro

 		
 Type System

 		
 Syntax of Types

 		
 Type Environment

 		
 Typing Rules

 		
 Polymorphic Types

 		
 Type System 3

 		
 Representing Types

 		
 Unification

 		
 Polymorphism

 		
 Type Classes

 		
 Quizzes

 		
 Intro

 		
 Qualified Types

 		
 Eq

 		
 Creating Instances

 		
 Automatic Derivation

 		
 Standard Typeclass Hierarchy

 		
 Using Typeclasses

 		
 Explicit Signatures

 		
 Monads

 		
 Abstracting Code Patterns

_static/file.png

_static/minus.png

_static/plus.png

